The Influence of Grain Morphology on Reservoir Quality of Some Athabasca Oil Sands Samples
ثبت نشده
چکیده
This study focused on the determination of detailed grain morphology using SEM technology on some Athabasca oil sands samples obtained from the Upper McMurray Formation in the Manville Group which occurs in the Western Canada Sedimentary Basin. The research was carried out using scientific techniques to understand grain morphology—being a major effect in discerning reservoir quality—a factor which is essential for in-situ bitumen recovery. After studying various grain size and shape parameters, results showed that Sample B is poorly sorted medium sand of relatively low porosity but high permeability. Sample C on the other hand is moderately sorted fine sand of relatively high porosity but low permeability. It was also found out that although both oil sand samples contain heavy oil which is essentially recoverable in-situ; Sample B proved to be more promising due to its higher permeability values. At the end of the study, it was recommended that further research be carried out on the oil sands samples by use of core analysis techniques; computer-based simulation for heavy oil recovery; and a general study of structural effects on oil sands such as weathering and fracturing, all of which are important in better-quality in-situ bitumen recovery.
منابع مشابه
Next-generation sequencing of microbial communities in the Athabasca River and its tributaries in relation to oil sands mining activities.
The Athabasca oil sands deposit is the largest reservoir of crude bitumen in the world. Recently, the soaring demand for oil and the availability of modern bitumen extraction technology have heightened exploitation of this reservoir and the potential unintended consequences of pollution in the Athabasca River. The main objective of the present study was to evaluate the potential impacts of oil ...
متن کاملHeterotrophic potentials and hydrocarbon biodegradation potentials of sediment microorganisms within the athabasca oil sands deposit.
Techniques for the enumeration and the determination of the potential activity of disturbed sediment mixed populations at control sites and sites within the Athabasca oil sands formation were applied to August and December samples. These techniques included the determination of general heterotrophic potential for the assimilation and respiration of glutamate, which indicated no oil sand-related...
متن کاملOil sands development contributes elements toxic at low concentrations to the Athabasca River and its tributaries.
We show that the oil sands industry releases the 13 elements considered priority pollutants (PPE) under the US Environmental Protection Agency's Clean Water Act, via air and water, to the Athabasca River and its watershed. In the 2008 snowpack, all PPE except selenium were greater near oil sands developments than at more remote sites. Bitumen upgraders and local oil sands development were sourc...
متن کاملOil sands development contributes polycyclic aromatic compounds to the Athabasca River and its tributaries.
For over a decade, the contribution of oil sands mining and processing to the pollution of the Athabasca River has been controversial. We show that the oil sands development is a greater source of contamination than previously realized. In 2008, within 50 km of oil sands upgrading facilities, the loading to the snowpack of airborne particulates was 11,400 T over 4 months and included 391 kg of ...
متن کاملLong-term reliability of the Athabasca River (Alberta, Canada) as the water source for oil sands mining.
Exploitation of the Alberta oil sands, the world's third-largest crude oil reserve, requires fresh water from the Athabasca River, an allocation of 4.4% of the mean annual flow. This allocation takes into account seasonal fluctuations but not long-term climatic variability and change. This paper examines the decadal-scale variability in river discharge in the Athabasca River Basin (ARB) with (i...
متن کامل